
1

V&V of a Spacecraft's Autonomous Planner
through Extended Automation

Martin S. Feather
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Drive

Pasadena, CA 91 109, USA
+18183541194

Martin.S.Feather@ Jpl.Nasa.Gov

SYNOPSIS:

We have introduced and used significant
automation during the verification and validation
(V&V) of a spacecraft's autonomous planner.
This abstract describes the problem we faced, the
solution we employed, and the applicability of
our approach in a general V&V setting.

PROBLEM: ,/,""fihf
Cost, performance and functionality concerns are
driving a trend towards use of self-sufficient
autonomous systems in place of human-
controlled mechanisms. Our focus has been the
verification and validation (V&V) of a
spacecraft's autonomous planner. This planner
generates the sequences of high-level commands
that control the spacecraft. The planner is part of
a self-sufficient autonomous system that will
operate a spacecraft over an extended period,
without human intervention or oversight. Hence,
V&V of the planner is crucial.

The planner can exhibit a much wider range of
behaviors that the command sequence
mechanisms of more traditional spacecraft
designs. Furthermore, it must respond correctly to
a wide range of circumstances. Together, these
raise some new challenges for V&V.

As for any complex piece of software, a major
focus of V&V revolves around thorough testing.
The new V&V challenges manifest themselves
during testing as the following combination of
characteristics:

Ben Smith
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Drive

Pasadena, CA 91 109, USA
+18183535371

Ben.D.Smith@ Jpl.Nasa.Gov

0

0

0

0

As

The planner's output (plans) are detailed and
voluminous, ranging from 1,000 to 5,000
lines long.

Each plan must satisfy all of the flight rules
that characterize correct operation of the
spacecraft. There are over 200 such flight
rules.

The information pertinent to deciding
whether or not a plan passes a flight rule is
dispersed throughout the plan.

The thorough testing of the planner yields
thousands of such plans, spanning the wide
range of circumstances in which the planner
is expected to operate.

a consequence, manual inspection of more
than a small-fragment of plans generated in the
course of testing is impractical.

SOLUTION:

Our approach has been to automate the checking
of plans. The automated system checks each plan
for adherence to all of the flight rules input to the
planner. This verifies that the planner is not
generating hazardous command sequences. The
automated system also performs some validation
checks. These arise from a gap between the
"natural" form of a flight rule, and the way in
which it must be re-encoded so as to be expressed
to the planner. The automated system checks a
direct encoding of the "natural" statement of the
flight rule, thus helping validate that the planner
and its inputs are accomplishing the desired

http://Jpl.Nasa.Gov
http://Jpl.Nasa.Gov

behavior.

We use a database as the
underlying reasoning
engine of our system to
automatically check
plans. To perform a
series of checks of a plan,
we load the plan as data
into the database, having
previously created a
database schema for the
kinds of information held
in plans. We express the
flight rules as database
queries. The database
query evaluator is used to
automatically evaluate
those queries against the

L their rationale

Automatic
translation

I Manually created

I b DATABASE 4
database queries

data

Automatic
loading of
database

4 Automatic analysis

Query results (confirmations with
justifications or anomalies)

<..:~>>>*, t ,<,<.:j... . <
;a2$@g,w
?~X*>i+<! ... f,.</:::': d . ~~ ~,. , ~ , ,. ~I

Figure 1 - Architecture for flight-rule verification of planner and outputs
Planner inputs

data. Query results are organized into those that
correspond to passing a test, which we report as
confirmations, and those that correspond to
failing a test, which we report as anomalies.

The net result is that we can quickly and
thoroughly check each plan. The automated
checking code takes less than five minutes (on a
Sun ULTRA Sparc) to perform each of several
hundred checks of a large (5,000 line) plan and
generate a report of the results. Plan generation is
a search-intensive activity, and a planner is a
complex piece of software precisely because of
the need to perform this search in an effective
and efficient manner. Conversely, once a plan
has been generated, checking properties of that
plan is relatively straightforward.

Because the flight rules themselves are numerous
and detailed, and evolve over the course of
software development, we have taken the
automation one step further. We generate the
verification part of the plan-checking code from
the flight rules themselves, in the same form in
which they are input to the planner. Using this
capability, we are able to automatically
regenerate the flight-rule checking code,
whenever the set of flight rules input to the
planner evolves. The architecture of this system

2

is shown in Figure 1, above.

APPLICABILITY:
Our approach has been developed for, and
applied to, V&V of a spacecraft's autonomous
planner. However, we believe the approach has
much wider applicability than this one project.
The characteristics that identify when this
approach is worthwhile and viable are as follows:

Worthwhile: The development of automated test
checking code, rather than relying upon manually
conducted checks, is warranted when:

0 There are voluminous amounts of data to
check, either because each test run yields lots
of data, or there are numerous test runs, or
both.

0 The checking of a test run is complex, either
because there are many checks to perfonn, or
the checks themselves are hard to perform, or
both.

These conditions render manual checking
unsatisfactory.

Viable: The style of automated checking we
developed requires the following conditions to
hold:

0 The data to check is self-contained. That is,

there is no need for human interaction to
determine whether or not a check has been
met. (In our planner task, each plan is a self-
contained object from which it can be
determined whether or not each flight rule
holds.)

The data to check is in a machine-
manipulable form. That is, it is feasible to
develop automated checking that will work
directly off the form of data available,
without human intervention. (In our planner
task, plans have exactly this characteristic,
since they are intended for consumption by
the spacecraft's automatic executive.)

Checking is easier than generation. That is,
the code to check that a test run satisfies the
desired conditions is simpler than the code
that generates that test data.

This has two positive consequences:

1. The development of the automated test
checking code will be a much lesser effort
than the development of the system under
test.

2. The test checking code will run faster
than the system under test (meaning it can
easily keep up with the test data
generated, and provide quick feedback to
the test personnel).

Both of these consequences were exhibited in
our effort. The development of the planner
took years, while the development of the plan
checker months. For plans in the range of
1,000 to 5,000 lines long, the planner takes 3
to 10 minutes to yield the plan, while the plan
checking code takes 30 seconds to 4 minutes
to perform its checks of a plan.

0 the set of rules evolves over time

flight rules are expressed in a machine-
manipulable format (constraints input to the
planner)

the language of those rules (planner constraint
language) is carefully proscribed so as to
render plan generation feasible; the
expression of those rules as checks can
employ an extensible, general purpose
language.

In our system, generation of the flight-rule
checking code takes under 10 minutes and is
completely automatic.

FURTHER OBSERVATIONS

Our problem and solution exhibit two further
characteristics of general importance.

The value of redundancy and rationale: Each
plan generated by the spacecraft's planner
contains both a sequence of activities, and
justifications for those activities. These
justifications related each activity to the flight
rules that were taken into account in planning that
activity. Viewed solely as a command sequence,
the presence of these justifications in the plan is
redundant. However, these justifications serve
two very useful roles for V&V purposes:

0 they provide rationale for why the planner
arrived at a plan. This rationale can be
checked to ensure that the planner is not only
arriving at the "right" solution (namely, a plan
that adheres to all the flight rules), but is
doing so for the "right" reasons. This gives
the test team confidence to extrapolate the
correct operation of the planner to a wide
range of circumstances.

Our automatic generation of flight-rule checking
code reflects the same characteristics of an
activity that is worthwhile and viable to
automate:

they provide redundancy that contributes to
our confidence in the checking code itself.
Our test checking code independently
performs the following three kinds of checks:

0 we have hundreds of flight rules to check

0 individual rules can be quite complex

1. that the activities of the plan adhere to all
the flight rules,

2. that there is a justification recorded with
3

each activity in the plan for every flight
rule that the checker finds is applicable to
that activity, and

3. that every justification recorded in the
plan can be traced back to a flight rule.

This makes it unlikely that the checking code
has a "blind spot" that happens to overlook a
fault in a plan.

The automated test checking code we
automatically generate from planner flight rules
checks this rationale.

Opportunities for validation: Verification was
the original focus of our plan checker generation
effort. By thorough checking of the planner's
outputs (plans) against the flight rules given as
input to the planner, we gained confidence that
the internal operation of planner was correct.
However, the effort also yielded significant
opportunities for validation.

Validation opportunities arose from a gap
between the most "natural" statement of a flight
rule, and the form in which it must be re-encoded
so as to be expressed to the planner. The planner
constraint language is carefully proscribed so as
tc I render plan generation feasible. On occasion,

a flight rule cannot be expressed directly in this
limited language. Instead, it must be (manually)
subdivided into several separate rules that in
conjunction will achieve the requisite condition,
and that individually can be expressed in the
constraint language. Our language for expressing
checks is more general purpose than the planner
constraint language. This means that it is possible
to (manually) encode an automatic check
corresponding directly to the original flight rule.
By following this process, we are able to validate
that the planner, and the encodings of flight rules
given to it, do in fact achieve the original intent.

Note that there is a manual step to this validation
- we must manually encode the original flight
rules (expressed in natural language) as checking
code. The checking code then runs automatically.
However this manual step can take advantage of
the framework established by the verification
architecture and code.

In more general terms, we see that verification
can be extended into the realm of validation when
the verification language is more general than the
language of the system being verified

~

~

Manual
decomposition

Goals & initial
plan Af PLAN

+
PLANNER -+ conditions

activities

Conceptual
flight rule

language)
pieces (natural

-b Flight rule and expression

Automatic
loading of
database

Database schema

Manual
expression Automatic translation

DATABASE 4
Database queries +

data

Automatic analysis

Query results

Figure 2 - Extension to the architecture to do validation

4

